Forecasting the Response of Terrestrial Habitats to Climate Change in the Northern Sierra

Louis Provencher[#], Greg Low^{&†}, Dick Cameron[&], Kirk Klausmeyer[&], Jason Mackenzie[&] #TNC Nevada, [†]Applied Conservation Inc., [&]TNC California

Acknowledgments #1

Funding:

A. Seelenfreund Resources Legacy Fund

Technical Support:

Kori Blankenship, TNC's LANDFIRE Liz Rank, The Nature Conservancy's Fire Learning Network

Acknowledgments #2

Expertise

- Franco Biondi, UNR
- Dave Conklin, Conservation Biology Institute
- David Edelson, TNC CA
- Jim Gaither, Jr., TNC CA
- Kyle Merriam, USFS Plumas National Forest
- Jason Moghaddas, Feather River Land Trust
- Rich Niswonger, U.S. Geological Survey, NV
- Robert Nowak, UNR
- Davis Prudic, retired, U.S. Geological Survey, NV

- Hugh Safford, USFS Pacific Southwest Region
- Rebecca Shaw, TNC CA
- Jason Sibold, Colorado State University
- Jim Thorne, UC-Davis

- Northern Sierra Partnership (NSP) climate change report:
- Integrates climate projections, forecasts of the response of major habitat types, and management simulations to determine:
 - Northern Sierra's habitats at greatest risk from projected future climate changes;
 - Coarse conservation strategies that might be most cost-effective for reducing or adapting to climate risks for selected at-risk ecosystems.

Mapping

- > About 5 million acres
- > Base layer: LANDFIRE
 - ✓ ECOLOGICAL SYSTEMS =
 BIOPHYSICAL SETTINGS
 (BPS)
 - ✓ SUBSUMED SMALL BPSS
 - ✓ VEGETATION CLASSES
 WITHIN BPS
- > Additional geodata:
 - ✓ NATIONAL WETLAND INVENTORY
 - ✓ USFS NATIONAL FOREST
 "STAMPED" OVER LF GEODATA
 - ✓ APPLIED CROSSWALK RULES
 FOR VEGETATION CLASSES IN
 NEW BPS

Methods Hypotheses of Climate Change #1

 \succ Based on temperature, precipitation, and CO_2

> Directly supported hypotheses:

- ✓ More frequent, larger fires
- Higher tree mortality during longer growing season droughts
- ✓ Longer period of low flows
- Longer period of groundwater recharge during colder months (more effective recharge)
- ✓ Increased dispersal of non-native species

Methods

Hypotheses of Climate Change #2

Inferred hypotheses:

- ✓ Greater conifer and deciduous tree species recruitment and growth in meadows/wetlands/riparian due to drought and CO₂ fertilization
- Impaired recruitment of willow and cottonwood due to modified hydrology
- \checkmark Faster growth of fast-growing native tree species
- ✓ Increased recruitment of high-elevation trees
- \checkmark Increased dispersal of pinyon and juniper in shrublands

✓ Updated or created 25 state-and-transition models (STM) in VDDT software

Methods Femporal Multipliers

- Created time series of parameter variability dependent on climate projections
 - Extended recent past climate 50 years into future
 - Modified current climate using CA PCM A1Fi climate projections

- > Reference condition is Natural Range of Variability (NRV)
 - % OF EACH VEGETATION CLASS WITHIN EACH BPS UNDER NATURAL DISTURBANCE REGIME
- Ecological Departure (ED) is the dissimilarity between NRV and current % of vegetation classes per BpS
- High Risk Vegetation (HRV) is the total % of "bad" classes:
 1) expensive to fix, 2) exotics, 3) pathways to 1) or 2).
- > % loss of acres from one BpS to others.

Ecological Departure

Which vegetation classes are "out of whack" per BpS Expected % = Natural Range of Variability (NRV) achieved under post-settlement climate

Vegetation Classes Traitie	Actual % in Class	Expected % in Class
Class A - Early Development, Open Herbaceous vegetation is dominant; shrub cover is 0 to 10%.	<1%	20%
<u>Class B</u> - Mid Development, Open Mountain big sagebrush cover up to 30%; herbaceous cover typically >50%.	6%	50%
<i>Class C</i> - Mid Development, Closed Shrubs are dominant with canopy cover of 31-50%. Herbaceous cover is typically <50%. Conifer sapling cover is <10%.	49%	15%
<i>Class D</i> – Late Development, Open Conifers are the upper lifeform; conifer cover is 10- 30%, herbaceous cover 10 - 30%, shrub cover 5 - 30%	6%	10%
<i>Class E</i> - Late Development, Closed Conifers are dominant; conifer cover is 31 - 80%, herbaceous cover >10%, shrub cover >5%	<1%	5%
Class U - Uncharacteristic	38%	-

East Side - Mid-Elevation Forest & Meadow Fire Multipliers

Methods Temporal Multipliers No CC *vs*. +CC

- Expressed our hypotheses of climate change by modifying trends and variability of model parameter(s) using temporal multipliers.
- No guidance on how to implement CC algorithms – used common sense and heuristic transformations.

ultiplier

Methods Range Shifts

- Estimated range shifts among BpSs caused by CC and based on historic vegetation changes (Wislander data) and Maxent projections.
 - Used Thorne's (UC Davis) conversion matrices of Wislander and new surveys to estimate vegetation conversion pathways & rates over 80 years after eliminating management-caused shifts (e.g., fire exclusion favoring mixed conifers over ponderosa pine)
 - Used TNC CA's Maxent bio-climatic estimates of major species "stress" (i.e., current habitat unsuitable in future) to estimate maximum rates of conversion: %BpS lost/80-year projection
- ✓ Assumed that range shifts occur <u>after stand replacing</u> <u>events</u> (e.g., chaparral replaces CA red fir after fire)

Methods Baseline Management Simulations - 50 years

- First performed MINIMUM MANAGEMENT scenario using 5 replicates
 - Livestock grazing + fire suppression + no active management
 - Without CC
 - With CC
 - Compared ED, HRV, % range shifts

Results

Baseline Management Simulations - 50 years

Identified 5 out of 25 BpSs needing future management because of added effects of CC:

BpS	Acres	Ecological Departure	High-Risk Vegetation	Range Shifts
Lodgepole Pine - Dry	8,900			
Aspen-Mixed Conifer	12,100			
Aspen Woodland	6,400			
California Montane Riparian	58,100			
Wet Meadow	108,400			

> 3 BpSs "improved" with CC

red fir-white pine; red fir-white fir; serpentine woodland & chaparral

Methods Active Management Simulations - 50 years

- > All active management scenarios included CC
- MAXIMUM and STREAMLINED MANAGEMENT scenarios using 5 replicates
 - Livestock grazing + fire suppression + active management
 - Compared ED, HRV, % range shifts
- MAXIMUM MANAGEMENT scenario = "get rid of the problem at all costs"
- STREAMLINED MANAGEMENT scenario = Achieve the best ecological solution for the least cost (i.e., highest Return on Investment)

Goal

Active Management Simulations - 50 years

> Desired future condition is not a trivial issue

- If managers want to preserve BpSs as they are today, then aggressively manage for the next 30 years
- If managers are willing to let CC cause range shifts, then manage whenever as ecological condition degrades
- We chose the first option: "hold the fort" as much as possible

Results

Baseline Management Simulations - 50 years

	Minimum Management			St M	treamlir anagem		
BpS	ED	HRV	Range Shifts	ED	HRV	Range Shifts	Cost \$/year
Lodgepole Pine – Dry	68	0	7	31	0	2	40,000
Aspen-Mixed Conifer	86	0	30	42	0	26	153,000
Aspen Woodland	48	0	19	23	0	6	150,000
California Montane Riparian	74	73	0	29	26	0	263,000
Wet Meadow	89	85	4	52	46	5	1,944,000

Streamlined Management Actions

BpS	Acres	Rx Fire	Thinning	Exotic Weed Inventory	Exotic Weed Control	Floodplain Restoration	Restoration of Unpalatable Vegetation
Lodgepole Pine – Dry	8,900	800; 0					
Aspen- Mixed Conifer	12,100	125; 0	125; 200				
Aspen Woodland	6,400		10; 0				
California Montane Riparian	58,100			500; 1,600	250; 1,200		
Wet Meadow	108,400			200; 2,000	100; 1,000	2,000; 0	800; 0

A;
$$= \frac{1^{st} 20 \text{ years}}{\text{Next 30 years}}$$

Conclusions

Climate change degraded 5 out of 25 BpSs

- ✓ Well-known restoration methods need to be implemented in the next 30 years to increase BpS resilience
- \checkmark Cost is high: wet meadow restoration costs \$100 million over 50 years
- 8 BpSs will experience increased HRV with or without CC due to:
 - \checkmark + cheatgrass in upland forests and shrublands
 - \checkmark + exotic forbs in montane riparian systems and wet meadows
- Climate change "improved" 3 BpSs by returning fire regimes to more natural state:
 - CA red fir-western white pine & -white fir
 - Ultramafic (serpentine) woodland & chaparral

Conclusions #2

> Riparian systems and wet meadows often on private lands

- NRCS and State agencies will likely be major sources of funding
- Potential for more rapid actions

> All systems of concerns found on public lands (USFS & BLM)

- Major policy and funding challenges due to
 - \checkmark Scale of actions
 - $\checkmark\,$ Litigious public land management in California and Tahoe Basin
 - ✓ Very restrictive management in Tahoe Basin
- > The restoration need is actually larger than presented here
 - We only addressed added effects of CC
 - Many other BpSs require management

Is Portfolio Robust?

- Ist part of project mostly done by CA staff
- > Not this presentation
- Generated future climate with ensemble approach
- Robust, but two areas more resistant to climate change:
 - ✓ Upper East Fork
 Carson River
 - ✓ Yuba River watershed

